
Comparison of Two Microcontroller Boards for
On-Device Model Training in a Keyword Spotting

Task
Nil Llisterri Giménez∗, Felix Freitag∗, JunKyu Lee†, Hans Vandierendonck†

Department of Computer Architecture. Technical University of Catalunya. Barcelona, Spain
nil.llisterri@estudiantat.upc.edu, felix@ac.upc.edu

† The Institute of Electronics, Communications and Information Technology. Queen’s University Belfast. UK
junkyu.lee, h.vandierendonck@qub.ac.uk

Abstract—Machine learning applications on resource-
constrained devices such as microcontroller units often use models
trained externally on more powerful devices. This approach,
however, limits a later adaptation of the machine learning model
in the device to changing data. Differently, on-device training
allows the model to be updated for new datasets, but the training
process needs to take into account the resource limitations of
the device. This paper compares on-device training performance
for a keyword spotting task using two popular microcontroller
boards, Arduino Nano 33 BLE Sense and Arduino Portenta H7,
in terms of inference accuracy, training latency, and current
consumption. We use feedforward neural networks having a
single hidden layer for models. The inference accuracy has been
significantly improved using the Portenta H7 board by employing
more neurons fitted to its memory budget, compared to the
Nano board. With a neural network having 25 neurons for a
hidden layer, the 5.0 × inference and 4.2 × training speedups are
achieved using the Arduino Portenta H7 board, compared to the
Arduino Nano 33 BLE Sense. While the memory of the Arduino
Nano 33 BLE Sense is capable to train a neural network for
the keyword spotting task, the Arduino Portenta H7 gives new
possibilities for exploring more complex models for more complex
problems thanks to a larger memory budget and adapting a
model to new data in lower latency.

Index Terms—TinyML, machine learning, IoT.

I . I N T R O D U C T I O N

Machine learning (ML) is progressively being implemented
in ever smaller computing devices, creating new infrastructures
at the network edge. Recently, ML applications are being
brought into microcontroller boards, which has been coined as
TinyML [1]. TinyML mitigates concerns of privacy, inference
speed, and energy consumption. For example, performing the
inference tasks locally on TinyML edge devices removes the
data communication between the edges and a cloud, minimizing
such concerns [2]. TinyML has opened a wide range of
applications where data is analyzed where it is produced and
with low energy usage. Wildlife conservation is a successful area
of TinyML1. Industrial applications include structural health

1Wildlife tracker challenge winners use nordic-powered wireless connec-
tivity. https://www.nordicsemi.com/News/2021/01/Wildlife-tracker-challenge-
winners-use-Nordic-powered-wireless-connectivity

monitoring, where TinyML can be applied to detect anomalies
[3].

However, most of today’s TinyML solutions use machine
learning models that have previously been trained on powerful
devices with large datasets, doing then only inference on the
embedded device. One of the limitations is that it is not possible
to adapt the model on the device to changing data.

There have been proposals to train models on the embedded
devices, like the works of [2], [4], [5], which combine transfer
learning with on-device training. In such on-device training,
a neural network is stored on the device and with each new
sample a specific layer of the model is incrementally trained.

In this paper we explore the training of a neural network
on microcontrollers for a Keyword Spotting (KWS) task with
two popular boards, the Arduino Nano 33 BLE Sense and
the Arduino Portenta H7. We compare the performance of
both boards for doing the KWS training task and analyze the
possibilities each hardware raises.

I I . R E L AT E D W O R K

Cai et al. [6] presented a memory efficient on-device learning,
named Tiny-Transfer-Learning (TinyTL). The idea of TinyTL
was to learn only bias modules for transfer learning while fixing
the weights to save the storage of intermediate activations in
backpropagation. Disabato et al. [7] discussed challenges and
opportunities of on-device training using embedded systems and
IoT devices with examples of an incremental learning algorithm
based on transfer learning and k-nearest neighbor algorithm. Ren
et al. [2] proposed an online learning on Micro-Controller Units
(MCUs) that is able to be adaptive to dynamically changing
data (e.g., time series data). Nil et al. [5] performed on-device
training on an Arduino Nano 33 BLE Sense board to explore
how different aspects of the federated learning mechanisms
affected the neural network (NN) training process.

Many researches [8]–[10] leveraged neural architecture search
variants [11] to generate compact networks fitted to resource
constrained devices such as MCUs and mobile devices accord-
ing to training data complexity, quality and quantity. Fedorov
et al. [12] claimed that the traditionally Convolutionary Neural

2021 10th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 7-10 JUNE 2021, BUDVA, MONTENEGRO

978-1-6654-6828-2/22/$31.00 ©2022 IEEE

20
22

 1
1t

h
M

ed
ite

rr
an

ea
n

Co
nf

er
en

ce
 o

n
Em

be
dd

ed
 C

om
pu

tin
g

(M
EC

O
) |

 9
78

-1
-6

65
4-

68
28

-2
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
M

EC
O

55
40

6.
20

22
.9

79
71

71

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on October 15,2023 at 17:02:40 UTC from IEEE Xplore. Restrictions apply.

Network (CNN) architecture is not suitable for MCUs due to
restricted memory budget, and proposed a search method to
seek compact sparse neural network architecture that can be
deployed on MCUs. Lee et al. [13] performed a survey on
model-, arithmetic-, and implementation-level optimization for
deep learning that can produce compact smaller networks for
resource constrained devices.

In this paper, we analyze the on-device training performance
in terms of accuracy and hardware usage on both the Arduino
Portenta and Nano boards, using as a case a KWS applications
and compare them. We also evaluate the performance of the
dual-core architecture of the Arduino Portenta board.

I I I . C A S E S T U D Y: K E Y W O R D S P O T T I N G M A C H I N E
L E A R N I N G TA S K

We created a dataset2 for three voiced keywords, each of
180 samples, being a total of 540 samples. These keywords
were taken using the Arduino Nano 33 BLE Sense built-in
microphone. The audio was sampled at 16kHz and recorded
for 1 second. For this audio signal 13 Mel-frequency cepstral
coefficients (MFCC) were computed for 50 frames (i.e., each
frame consists of signal samples for 20ms), obtaining thus 650
values.

With this data we train in the microcontroller a three layer
feedforward neural network, which is stored in the device’s
RAM. The input layer of the network has as many nodes as
MFCC coefficient are extracted, i.e 650. It is connected to a
fully connected hidden layer, whose size we change throughout
the experimentation according to available memory footprint
on each for an Arduino Nano and an Arduino Portenta H7
board. Finally, the output layer has 3 nodes, corresponding to
the number of keywords to recognize. For the training of the
neural network for the KWS task we apply the implementation
of [5].

I V. E X P E R I M E N TAT I O N

For the experimentation we use the Arduino Nano 33 BLE
Sense, which contains a microcontroller based on the Cortex
M4F running at 64Mhz with 256kB SRAM. We also use the
Arduino Portenta H7, which contains two cores, a Cortex M7
running at 480 MHz and a Cortex M4 running at 240 MHz. We
observed that from the 1 MB of SRAM of the board, 523kB
was available for the Cortex M7 and 295kB for the Cortex
M4. Figure 1 shows the two types of boards we used for the
experimentation.

The experimentation is divided in two parts: In section IV-A
we compare the application deployed on the two boards where
in the Portenta H7 we use only the M7. In section IV-B we
analyse the application deployed on the Portenta H7 when the
M7 and M4 microcontrollers are used.

A. Comparison of the KWS application on the Arduino Nano
33 BLE Sense and Arduino Portenta H7

Memory usage: We experimentally determined the maxi-
mum size of the hidden layer allowed by the memory constraints

2The dataset and the application code is publicly accessible at
https://github.com/NilLlisterri/Portenta-Dual-Core

Figure 1: Arduino Nano 33 BLE Sense and Arduino Portenta
H7 with Vision Shield.

of the two microcontroller boards for the given feedforward
neural network. For the Arduino Nano we found that this was
a layer of 25 hidden neurons considering the required number
of weights and activations while for the Arduino Portenta up
to 70 hidden neurons were the maximum possible.

Analyzing the components used by the KWS application,
the audio buffer consumes 32kB, the neural network weights
in the Arduino Nano and Arduino Portenta consume around
65kB and 182kB, repectively, and the same amount of memory
is consumed for the gradients of the backpropagation training.
Compiler information indicated that around 48kB are used for
other memory allocations of code and libraries.

Model training performance: We flash the same KWS
application code to the two types of boards but with different
hidden layer size, corresponding to the maximum allowed by the
RAM of each board. We split our dataset in three parts of 180
samples, each with an equal number of the three keywords. Then
we conduct with three devices of each board on-device training.
The first 120 samples train the neural network on the board,
the last 60 samples are used for inference. Figure 2 describes
the model loss in training (i.e., training error from the epoch
number 1 to 120) and inference (i.e., inference error from the
epoch number 121 to 180) measured at each epoch. We update
the weights per sample (i.e., each epoch utilizes one sample.).
The model loss is measured using the MSE. Visual inspection
shows that although the main training effect happens in the first
tens of training samples, there are occasionally samples which
later still produce a high loss. We stop the training when the
number of epochs reaches 120.

Model inference performance: In inference task using the
60 samples (i.e., epoch number from 121 to 180 in Figure 2),
the loss is very low in both networks, which turns into a very
high accuracy achieved when doing the inference for keyword
classification. We observe that the inference accuracy of a NN
using more neurons on Ardunio Portenta board is significantly
higher than Nano board (refer to Device 1 setting for each
board).

Computing time: We compare the computing time when
we use the same machine learning model on both boards, i.e the
feedforward neural network with a hidden layer of 25 neurons.

2021 10th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 7-10 JUNE 2021, BUDVA, MONTENEGRO

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on October 15,2023 at 17:02:40 UTC from IEEE Xplore. Restrictions apply.

(a) Arduino Nano board: training on three boards a neural
network with hidden layer of 25 neurons.

(b) Arduino Portenta board: training on three boards a neural
network with hidden layer of 70 neurons.

Figure 2: Loss vs. epochs during training on both types of board
the neural network with different hidden layer size.

Figure 3 shows the time we measured for doing the training
with backpropagation and the inference on both boards. It can
be seen that with the M7 core the Arduino Portenta H7 performs
between 4-5 times faster.

B. Analysis of the KWS application on the dual cores of Arduino
Portanta H7

The dual-core architecture of the Arduino Portenta H7 allows
one core to manage the audio recording, while the other can
manage the tasks related to the NN. The first approach was to
manage the NN on the more powerful M7 core, and use the M4
core to capture the audio and prepare it so the M7 can consume
it. Unfortunately, the audio capturing library was only designed
for the M7 core 3, so the tasks had to be shifted. This means
that the number of neurons in a hidden layer is restricted to
25 on the M4 core at most for our dual-core implementation
version.

3GitHub issue:https://github.com/arduino/ArduinoCore-mbed/issues/416

Figure 3: Inference and backpropagation times for both boards
and M7 and M4 cores in Adruino Portenta, respectively.

When the audio is recorded by one core, the captured
data, processed from the audio capturing library, has to be
accessible for the other core in order to perform the ML
tasks. Both cores can communicate via Remote Procedure Call
(RPC) and using a shared memory region. We notice that the
recorded signal occupies 32kB of memory, and transmitting
this information via RPC would be slow, while storing it in a
shared memory region and notifying the other core via an RPC
is practically instantaneous. Therefore, it would be beneficial
to store the recorded signal (e.g., pre-processed data) in the
shared memory region first and utilize RPC to inform the other
core of this event later. This implementation method will be
useful particularly for latency-critical time series applications
that utilise online learning method. Using both cores affects the
power consumption of the device. When only the M7 core is
used, the idle current consumption is 84mA. When both are used,
the consumption increases by 10mA. When recording, both in
dual-core and single-core mode, the consumption increases by
5mA. Differently, when the NN is trained (i.e. the forward and
backward pass), using different cores has a significant impact
on the consumption. When the NN is trained on the M7 core,
the consumption increases by 20mA, while on the M4 it only
increases by 6mA.

In figure 4 we can observe the power consumption while
performing different tasks in the dual-core mode. In this mode,
when both cores are idle, 94mA are used. When the M7
core starts recording the consumption rises to 100mA. Then,
when the M4 starts training the network, the consumption
increases to 111mA. When the device communicates with the
server, for example when the testing samples are sent, the
maximum consumption of 127mA is reached. This implies
that since the data transfer cost is a main factor for current (or
power) consumption for on-device training on Arduino Portenta
H7 board, it would be recommended to compress the data
prior to storing them to memory in the board to save energy
consumption.

Figure 5 depicts the current evolution in a record-and-train
loop. The device is idle for 6 seconds, and after that the

2021 10th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 7-10 JUNE 2021, BUDVA, MONTENEGRO

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on October 15,2023 at 17:02:40 UTC from IEEE Xplore. Restrictions apply.

Figure 4: Arduino Portenta H7 current consumption per activity.

Table I: Disribution of KWS application code on the two cores.

M7 Core M4 Core

Communicate with the server Preprocess the audio (MFCC)
Record audio Inference

Manage shared buffer Backpropagation
Proxy the M4 serial communication

recording of a one-second sample starts. Then, the NN will be
trained with the captured audio. The current recordings are taken
approximately every 1,3s. As the inference and backpropagation
times are very small, about 10ms, the current spike we can
observe is mainly due to the recording process.

Figure 5: Arduino Portenta H7 current evolution when periodi-
cally recording and training.

In the dual-core setup the tasks of the KWS applications are
distributed as pictured in Table I. The M7 core performs various
types of tasks, like interacting with the server and preparing the
audio samples for the M4 core. The M4 core is focused on the
ML aspect only; preprocessing the audio signal, running the
inference and the backpropagation.

V. C O N C L U D I N G R E M A R K S A N D O U T L O O K

The memory of the Arduino Nano 33 BLE Sense was suffi-
cient for the on-device training of a simple KWS task. Upgrad-
ing the hardware to an Arduino Portenta H7 with the increased
SRAM and computational power can open new possibilities
for training more complex neural networks such as CNNs for
KWS tasks which was proposed in [14]. The Arduino Portenta
H7 dual-processor architecture could be further exploited for
dividing the machine learning application components on the
two cores, according to the application’s requirements for speed
and memory. On-device training on MCUs becomes more
significant as the compute capability of MCUs is improving and

the privacy appears as one of the main concerns in the artificial
intelligence community. Our work will help readers from the
artificial intelligence community understand the feasibility of
on-device training at the intersection between the problem
complexity and the compute resource budgets.

A C K N O W L E D G M E N T

This work was partially supported by the Spanish Government
under contracts PID2019-106774RB-C21, PCI2019-111850-
2 (DiPET CHIST-ERA CHIST-ERA-SDCDN-002), PCI2019-
111851-2 (LeadingEdge CHIST-ERA), and UK Engineering and
Physical Sciences Research Council (EP/T022345/1).

R E F E R E N C E S

[1] C. R. Banbury, V. J. Reddi, M. Lam, W. Fu, A. Fazel, J. Holleman,
X. Huang, R. Hurtado, D. Kanter, A. Lokhmotov, D. Patterson, D. Pau,
J. sun Seo, J. Sieracki, U. Thakker, M. Verhelst, and P. Yadav, “Bench-
marking tinyml systems: Challenges and direction,” 2021.

[2] H. Ren, D. Anicic, and T. A. Runkler, “Tinyol: Tinyml with online-
learning on microcontrollers,” CoRR, vol. abs/2103.08295, 2021. [Online].
Available: https://arxiv.org/abs/2103.08295

[3] C. Arcadius Tokognon, B. Gao, G. Y. Tian, and Y. Yan, “Structural
health monitoring framework based on internet of things: A survey,” IEEE
Internet of Things Journal, vol. 4, no. 3, pp. 619–635, 2017.

[4] K. Kopparapu and E. Lin, “Tinyfedtl: Federated transfer learning on tiny
devices,” 2021.

[5] N. Llisterri Giménez, M. Monfort Grau, R. Pueyo Centelles, and F. Freitag,
“On-device training of machine learning models on microcontrollers with
federated learning,” Electronics, vol. 11, no. 4, 2022. [Online]. Available:
https://www.mdpi.com/2079-9292/11/4/573

[6] H. Cai, C. Gan, L. Zhu, and S. Han, “Tinytl: Reduce memory, not
parameters for efficient on-device learning,” in Advances in Neural
Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020,
pp. 11 285–11 297.

[7] S. Disabato and M. Roveri, “Incremental on-device tiny machine
learning,” in Proceedings of the 2nd International Workshop on
Challenges in Artificial Intelligence and Machine Learning for
Internet of Things, ser. AIChallengeIoT ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 7–13. [Online]. Available:
https://doi.org/10.1145/3417313.3429378

[8] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V.
Le, “Mnasnet: Platform-aware neural architecture search for mobile,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[9] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for
convolutional neural networks,” ser. Proceedings of Machine Learning
Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. Long
Beach, California, USA: PMLR, 09–15 Jun 2019, pp. 6105–6114.
[Online]. Available: http://proceedings.mlr.press/v97/tan19a.html

[10] “Neuton.ai,” https://neuton.ai, accessed: 09-March-2021.
[11] B. Zoph and Q. Le, “Neural architecture search with reinforcement learn-

ing,” in ICLR ’17: International Conference on Learning Representations,
2017.

[12] I. Fedorov, R. P. Adams, M. Mattina, and P. Whatmough, “Sparse: Sparse
architecture search for cnns on resource-constrained microcontrollers,”
in Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
Eds., vol. 32. Curran Associates, Inc., 2019.

[13] J. Lee, L. Mukhanov, A. S. Molahosseini, U. Minhas, Y. Hua, J. M. del Rin-
con, K. Dichev, C.-H. Hong, and H. Vandierendonck, “Resource-efficient
deep learning: A survey on model-, arithmetic-, and implementation-level
techniques,” 2021.

[14] T. N. Sainath and C. Parada, “Convolutional neural networks for small-
footprint keyword spotting,” in Proc. Interspeech 2015, 2015, pp. 1478–
1482.

2021 10th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 7-10 JUNE 2021, BUDVA, MONTENEGRO

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on October 15,2023 at 17:02:40 UTC from IEEE Xplore. Restrictions apply.

